L8 Other notions of equilibria

CS 280 Algorithmic Game Theory Ioannis Panageas

Relaxing Nash equilibrium

• NASH is computationally hard.

Question: Are there other equilibrium notions that are computationally tractable?

Relaxing Nash equilibrium

• NASH is computationally hard.

Question: Are there other equilibrium notions that are computationally tractable?

Answer: Correlated equilibria, i.e., relaxing the product distribution assumption.

	Chicken-out	Dare
Chicken-out	0, 0	-2, 1
Dare	1, -2	-10, -10

Suppose agents are recommended (C, D), (D, C), (C, C) with probability $\frac{1}{3}$ each.

	Chicken-out	Dare
Chicken-out	0, 0	-2, 1
Dare	1, -2	-10, -10

Suppose agents are recommended (C, D), (D, C), (C, C) with probability $\frac{1}{3}$ each.

• If agent row is recommended to choose C, then column is recommended to play C or D with equal probability. Expected payoff of row is $\frac{1}{2} \cdot 0 + \frac{1}{2}(-2) = -1$ which is greater than switching to D (expected payoff is -4.5).

	Chicken-out	Dare
Chicken-out	0, 0	-2, 1
Dare	1, -2	-10, -10

Suppose agents are recommended (C, D), (D, C), (C, C) with probability $\frac{1}{3}$ each.

- If agent row is recommended to choose C, then column is recommended to play C or D with equal probability. Expected payoff of row is $\frac{1}{2} \cdot 0 + \frac{1}{2}(-2) = -1$ which is greater than switching to D (expected payoff is -4.5).
- If agent row is recommended to choose D, then column is recommended to play C. Expected payoff of row is 1 which is greater than switching to C (expected payoff is 0).

	Chicken-out	Dare
Chicken-out	0, 0	-2, 1
Dare	1, -2	-10, -10

Suppose agents are recommended (C, D), (D, C), (C, C) with probability $\frac{1}{3}$ each.

• If agent row is recommended to choose *C*, then column is recommended to play *C* or *D* with equal probability. Expected parent of row is $\frac{1}{2} \cdot 0 + \frac{1}{2}(-2) = -1$ will Similarly for column player! ed payoff is -4.5).

• If agent row is (C, D), (D, C) and (C, C) with is recommended to play C. Exp 1/3 each is a correlated eq. han switching to C (expected particular content of the second seco

Definition (Recall). *A game is specified by*

- set of *n* players $[n] = \{1, ..., n\}$
- For each player i a set of strategies/actions S_i .
- set of strategy profiles $S = S_1 \times ... \times S_n$.
- *Each agent i has a utility* $u_i : S \rightarrow [-1, 1]$ *denoting the payoff of i.*

Definition (Recall). *A game is specified by*

- set of *n* players $[n] = \{1, ..., n\}$
- For each player i a set of strategies/actions S_i .
- set of strategy profiles $S = S_1 \times ... \times S_n$.
- *Each agent i has a utility* $u_i : S \rightarrow [-1, 1]$ *denoting the payoff of i.*

Definition (Correlated Equilibrium). Correlated equilibrium is a distribution χ over S such that for all agents i and strategies b, b' of i

$$\mathbb{E}_{s\sim\chi}[u_i(b,s_{-i})|s_i=b] \geq \mathbb{E}_{s\sim\chi}[u_i(b',s_{-i})|s_i=b].$$

Definition (Recall). *A game is specified by*

- set of *n* players $[n] = \{1, ..., n\}$
- For each player i a set of strategies/actions S_i .
- set of strategy profiles $S = S_1 \times ... \times S_n$.
- *Each agent i has a utility* $u_i : S \rightarrow [-1, 1]$ *denoting the payoff of i.*

Definition (Correlated Equilibrium). Correlated equilibrium is a distribution χ over S such that for all agents i and strategies b, b' of i

$$\mathbb{E}_{s\sim\chi}[u_i(b,s_{-i})|s_i=b] \geq \mathbb{E}_{s\sim\chi}[u_i(b',s_{-i})|s_i=b].$$

Similarly for all agents *i* and swapping functions $f: S_i \rightarrow S_i$,

$$\mathbb{E}_{s \sim \chi}[u_i(s_i, s_{-i})] \geq \mathbb{E}_{s \sim \chi}[u_i(f(s_i), s_{-i})].$$

Intro to AGT

Correlated equilibrium and Nash

Remarks:

- Knowing an agent her recommended action, she can infer something about other players' moves. Yet she is better off playing the recommended action.
- Suppose χ is a product distribution. Then correlated eq. corresponds to Nash eq.

Correlated equilibrium and Nash

Remarks:

 Knowing an agent her recommended action, she can infer something about other players' moves. Yet she is better off playing the recommended action.

Set of Nash equilibria \subseteq Set of correlated equilibria.

Example (Coarse Correlated eq.)

Suppose the actions (R, P), (R, S), (P, R), (P, S), (S, R), (S, P) are chosen with probability $\frac{1}{6}$ each.

Example (Coarse Correlated eq.)

Suppose the actions (R, P), (R, S), (P, R), (P, S), (S, R), (S, P) are chosen with probability $\frac{1}{6}$ each.

• If agent row plays R, agent column responds with either P or S with equal probability. If column deviates (say starts responding with paper higher possibility) she will incur more loss when row plays S (recall row plays R as well S with equal probability).

Example (Coarse Correlated eq.)

Suppose the actions (R, P), (R, S), (P, R), (P, S), (S, R), (S, P) are chosen with probability $\frac{1}{6}$ each.

• If agent column is instructed to play P then she knows that other player is playing either R or S and column has average payoff 0. She can change then to R and improve payoff to 1/2 compared to zero if she plays recommended action. In this case, column could exploit knowledge of action recommendation to improve her payoff.

Definition (Coarse Correlated Equilibrium). Coarse correlated equilibrium is a distribution χ over S such that for all agents i and strategies b of i

$$\mathbb{E}_{s \sim \chi}[u_i(s)] \geq \mathbb{E}_{s \sim \chi}[u_i(b, s_{-i})].$$

Remark: The difference between coarse correlated and correlated is that we can choose a ``smart" swap function, namely f ``knows" the distribution χ .

Definition (Coarse Correlated Equilibrium). Coarse correlated equilibrium is a distribution χ over S such that for all agents i and strategies b of i

 $\mathbb{E}_{s \sim \chi}[u_i(s)] \geq \mathbb{E}_{s \sim \chi}[u_i(b, s_{-i})].$

Set of correlated equilibria \subseteq Set of coarse correlated equilibria.

Full picture of Inclusions

Online learning in Games

Definition. At each time step t = 1...T.

- Each player *i* chooses $x_i^{(t)} \in \Delta_i$ (simplex).
- Each player experiences payoff $u_i(x^{(t)})$ and observes all players strategies $x_i^{(t)}$.

Online learning in Games

Definition. At each time step t = 1...T.

- Each player *i* chooses $x_i^{(t)} \in \Delta_i$ (simplex).
- Each player experiences payoff $u_i(x^{(t)})$ and observes all players strategies $x_i^{(t)}$.

Player's i goal is to minimize the (time average) Regret, that is:

$$\frac{1}{T} \left[\max_{a \in S_i} \sum_{t=1}^T u_i(a, x_{-i}^{(t)}) - \sum_{t=1}^T u_i(x^{(t)}) \right].$$

If Regret $\rightarrow 0$ as T $\rightarrow \infty$, the algorithm is called **no-regret**.

A no-regret Algorithm

Definition (Online Gradient Descent). Let $\ell_t : \mathcal{X} \to \mathbb{R}$ be family of convex functions, differentiable and L-Lipschitz in some compact convex set \mathcal{X} of diameter D. Online GD is defined:

Initialize at some x_0 . For t:=1 to T do 1. $y_t = x_t - \alpha_t \nabla \ell_t(x_t)$. 2. $x_{t+1} = \Pi_{\mathcal{X}}(y_t)$. Regret: $\frac{1}{T} \left(\sum_{t=1}^T \ell_t(x_t) - \min_x \sum_{t=1}^T \ell_t(x) \right)$.

A no-regret Algorithm

Definition (Online Gradient Descent). Let $\ell_t : \mathcal{X} \to \mathbb{R}$ be family of convex functions, differentiable and L-Lipschitz in some compact convex set \mathcal{X} of diameter D. Online GD is defined:

Initialize at some x_0 . For t:=1 to T do step-size 1. $y_t = x_t - \alpha_t \nabla \ell_t(x_t)$. 2. $x_{t+1} = \Pi_{\mathcal{X}}(y_t)$. $\ell_t = -u_i(x^{(t)})$ Regret: $\frac{1}{T} \left(\sum_{t=1}^T \ell_t(x_t) - \min_x \sum_{t=1}^T \ell_t(x) \right)$.

Theorem (Online Gradient Descent). Let $\ell_t : \mathcal{X} \to \mathbb{R}$ be family of convex functions, differentiable and L-Lipschitz in some compact convex set \mathcal{X} of diameter D. It holds

$$\left(\frac{1}{T}\sum_{t=1}^{T}\ell_t(x_t) - \min_{x}\sum_{t=1}^{T}\ell_t(x)\right) \le \frac{3}{2}\frac{LD}{\sqrt{T}},$$

with appropriately choosing $\alpha = \frac{D}{L\sqrt{t}}$.

Remarks:

- If we want error ϵ , we need $T = \Theta\left(\frac{L^2 D^2}{\epsilon^2}\right)$ iterations.
- I could have written Multiplicative Weights Update. This is another no-regret

algorithm! Same regret guarantees, i.e., $O\left(\frac{1}{\sqrt{T}}\right)$.

Proof. Let x^* be the argmin of $\sum \ell_t(x)$.

$$\ell_t(x_t) - \ell_t(x^*) \le \nabla \ell_t(x_t)^\top (x_t - x^*) \text{ convexity,} \\ = \frac{1}{\alpha_t} (x_t - y_t)^\top (x_t - x^*) \text{ definition of GD,}$$

Proof. Let x^* be the argmin of $\sum \ell_t(x)$.

$$\begin{split} \ell_t(x_t) - \ell_t(x^*) &\leq \nabla \ell_t(x_t)^\top (x_t - x^*) \text{ convexity,} \\ &= \frac{1}{\alpha_t} (x_t - y_t)^\top (x_t - x^*) \text{ definition of GD,} \\ &= \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 + \|x_t - y_t\|_2^2 - \|y_t - x^*\|_2^2 \right) \text{ law of Cosines,} \\ &= \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 - \|y_t - x^*\|_2^2 \right) + \frac{\alpha_t}{2} \|\nabla \ell_t(x_t)\|_2^2 \text{ Def. of } y_t, \end{split}$$

Proof. Let x^* be the argmin of $\sum \ell_t(x)$.

$$\begin{split} \ell_t(x_t) - \ell_t(x^*) &\leq \nabla \ell_t(x_t)^\top (x_t - x^*) \text{ convexity,} \\ &= \frac{1}{\alpha_t} (x_t - y_t)^\top (x_t - x^*) \text{ definition of GD,} \\ &= \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 + \|x_t - y_t\|_2^2 - \|y_t - x^*\|_2^2 \right) \text{ law of Cosines,} \\ &= \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 - \|y_t - x^*\|_2^2 \right) + \frac{\alpha_t}{2} \|\nabla \ell_t(x_t)\|_2^2 \text{ Def. of } y_t, \\ &\leq \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 - \|y_t - x^*\|_2^2 \right) + \frac{\alpha_t L^2}{2} \text{ Lipschitz,} \\ &\leq \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha_t L^2}{2} \text{ projection.} \end{split}$$

Proof cont. Since

$$\ell_t(x_t) - \ell_t(x^*) \leq \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha_t L^2}{2},$$

taking the telescopic sum we have

$$\begin{split} \sum_{t=1}^{T} \left(\ell_t(x_t) - \ell_t(x^*) \right) &\leq \sum_{t=1}^{T} \|x_t - x^*\|_2^2 \left(\frac{1}{2\alpha_t} - \frac{1}{2\alpha_{t-1}} \right) + \frac{L^2}{2} \sum_{t=1}^{T} \alpha_t. \\ &\leq \frac{D^2}{2} \sum_{t=1}^{T} \left(\frac{1}{\alpha_t} - \frac{1}{\alpha_{t-1}} \right) + \frac{L^2}{2} \sum_{t=1}^{T} \alpha_t. \end{split}$$

Proof cont. Since

$$\ell_t(x_t) - \ell_t(x^*) \leq \frac{1}{2\alpha_t} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha_t L^2}{2},$$

taking the telescopic sum we have

$$\sum_{t=1}^{T} \left(\ell_t(x_t) - \ell_t(x^*) \right) \le \sum_{t=1}^{T} \|x_t - x^*\|_2^2 \left(\frac{1}{2\alpha_t} - \frac{1}{2\alpha_{t-1}} \right) + \frac{L^2}{2} \sum_{t=1}^{T} \alpha_t.$$
$$\le \frac{D^2}{2} \sum_{t=1}^{T} \left(\frac{1}{\alpha_t} - \frac{1}{\alpha_{t-1}} \right) + \frac{L^2}{2} \sum_{t=1}^{T} \alpha_t.$$
$$\le \frac{D^2}{2\alpha_T} + \frac{L^2}{2} \sum_{t=1}^{T} \alpha_t \le \frac{LD}{2} \sqrt{T} + 2\sqrt{T} \frac{LD}{2}.$$

where we used the fact $\sum \frac{1}{\sqrt{t}} \leq 2\sqrt{T}$ and $\alpha_t = \frac{D}{\sqrt{tL}}$.

Suppose that each agent *i* uses no-regret dynamics (online GD), with $l_t = -u_i(x^{(t)})$ where $x^{(t)}$ is the mixed strategy profile at iterate *t*.

Suppose that each agent *i* uses no-regret dynamics (online GD), with $l_t = -u_i(x^{(t)})$ where $x^{(t)}$ is the mixed strategy profile at iterate *t*.

- Let σ^t be the product distribution on *S* induced by $x^{(t)}$.
- Let σ be the uniform distribution over $\{\sigma^1, \dots, \sigma^T\}$.

Suppose that each agent *i* uses no-regret dynamics (online GD), with $l_t = -u_i(x^{(t)})$ where $x^{(t)}$ is the mixed strategy profile at iterate *t*.

- Let σ^t be the product distribution on *S* induced by $x^{(t)}$.
- Let σ be the uniform distribution over $\{\sigma^1, \dots, \sigma^T\}$.

We conclude that for each agent *i*

$$\mathbb{E}_{s \sim \sigma}[u_i(s)] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \sigma^t}[u_i(s)]$$
$$\min_{b \in S_i} \mathbb{E}_{s \sim \sigma}[u_i(b, s_{-i})] = \min_{b \in S_i} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s \sim \sigma^t}[u_i(b, s_{-i})]$$

Suppose
where
$$\sum_{b \in S_i} \mathbb{E}_{s \sim \sigma}[u_i(b, s_{-i})] - \mathbb{E}_{s \sim \sigma}[u_i(s)] \leq \frac{3}{2} \sqrt{T}$$

Lipschitz
 $\sum_{b \in S_i} \mathbb{E}_{s \sim \sigma}[u_i(b, s_{-i})] - \mathbb{E}_{s \sim \sigma}[u_i(s)] \leq \frac{3}{2} \sqrt{T}$
Choosing $T = \frac{9n}{4\epsilon^2}$ we conclude σ is ϵ -approximate CCE!
We co
 $\mathbb{E}_{s \sim \sigma}[u_i(s)] = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{s \sim \sigma^t}[u_i(s)]$
 $\min_{b \in S_i} \mathbb{E}_{s \sim \sigma}[u_i(b, s_{-i})] = \min_{b \in S_i} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{s \sim \sigma^t}[u_i(b, s_{-i})]$

Suppose
where:

$$\min_{b \in S_{i}} \mathbb{E}_{s \sim \sigma}[u_{i}(b, s_{-i})] - \mathbb{E}_{s \sim \sigma}[u_{i}(s)] \leq \frac{3}{2} \sqrt{T}$$
Choosing $T = \frac{9n}{4\epsilon^{2}}$ we conclude σ is ϵ -approximate CCE!
We conclude σ is ϵ -approximate CCE!
If we use MWUA, it gives $O\left(\frac{\ln n}{\epsilon^{2}}\right)$.

$$\mathbb{E}_{s \sim \sigma}[u_{i}(s)] = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{s \sim \sigma^{t}}[u_{i}(s)]$$

$$\min_{b \in S_{i}} \mathbb{E}_{s \sim \sigma}[u_{i}(b, s_{-i})] = \min_{b \in S_{i}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{s \sim \sigma^{t}}[u_{i}(b, s_{-i})]$$